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Abstract

The problem of the decimation of a network of impedances on the three-
dimensional Sierpinski gasket is solved: the exact map M is given and its
asymptotic behaviours are studied. The most significant invariant subspaces
of M and the associated submaps are considered. This also allows us to
address the problem of small-size phenomena, such as oscillating asymptotic
behaviour, on this kind of fractal. The set of the resonances of the system
and the frequency dependence of the total impedance are studied both in the
thermodynamic limit and in mesoscopic systems.

PACS numbers: 64.60.Ak, 05.45.Df, 84.30.Bv

1. Introduction

In recent years we have been witnessing a growing rate of interest in the practical application
of fractals. Their peculiar geometry was used, for instance, in optics to study the properties
of fractal diffraction gratings (diffractals) [1] and to create subwavelength fractal bandgap
slabs [2]. In electrical engineering, electromagnetic theory has been combined with fractal
geometry to found a new branch of research called fractal electrodynamics [3], in which the
most promising area is the theory and design of multiband fractal antennas [4]. As opposed to
the usual statistical models on fractals, that are usually studied in the thermodynamic limit, all
these systems are typically low size; nevertheless their self-similarity has a profound influence
on their physical properties.

In a previous paper [5] we addressed a simple electrical problem on a fractal: that of
a deterministic circuit of passive impedances (resistors, inductors and capacitors), choosing
the paradigmatic Sierpinski gasket to be our system. We detected typical signs of the fractal
geometry of the system, e.g., in the distribution of electrical resonances and in the dependence
of the total impedance on the frequency of the applied signal. We also found a signature
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Figure 1. The basic cell (generation 0) and the first two generations of the three-dimensional
Sierpinski gasket.

of the dilatation-invariant structure in a phenomenon, which we called oscillating asymptotic
behaviour, that was peculiar of mesoscopic systems.

In this paper we extend our analysis: we find and discuss the exact recursion map for the
decimation of a 3d Sierpinki gasket of impedances. This problem was first tackled 20 years
ago by Vannimenus and Knezevich [6], who calculated the asymptotic expansion of the map
to first order: they aimed at modelling the isotropization of macroscopic conductivity near
the percolation threshold in anisotropic systems. Later on, Jafarizadeh [7], motivated by the
results of Barlow et al [8], gave a general method of finding the map of any d-dimensional
generalized Sierpinski gasket, and found the exponents with which the anisotropy vanishes.

The exact map that we will deduce in the following will allow us to classify the fixed
points (apart from that at infinity) and identify several invariant subspaces and submaps with
exotic behaviour. We will be able to study small-size effects, such as oscillating asymptotic
behaviour (OAB), and the dependence on frequency both at low and high generations.

The outline of the paper is as follows. In section 2 we show how to find the exact
map M (that is given in the appendix) and study its fixed points and asymptotic behaviours.
In section 3 we consider the most interesting invariant subspaces of M. In section 4 we
introduce and analyse the oscillating asymptotic behaviour. In section 5 we address the issue
of the frequency dependence of the impedance of our system in the most interesting cases.
Section 6 is devoted to the conclusions and the perspectives for future work.

2. The exact map

2.1. Calculation of the map

The network we consider is a 3d Sierpinski gasket of impedances: the recursive rule to build
it is shown in figure 1.

The basic cell (figure 2) is a tetrahedron with four vertices and six links, an electrical pole
on each vertex and an impedance on each link; it coincides with the complete graph K4, as
shown on the right.

The vertices are labelled with the lower case letters a, b, ¢, d and the links with the
numbers 1, ..., 6 as shown in the figure; accordingly, the impedances on the links are z;,
i = 1,...,6. When necessary we will use the notation zlf"), i = 1,...,6 to indicate nth-
generation impedances (i.e., the impedances after n decimations). We also call Z,, the external
impedance of the system measured between the two poles a and b (ZIEZ) at generation 1), and
the same for the other poles (there are six ways to measure the external impedance).
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a 7 b

Figure 2. Left: the basic cell of the fractal is a tetrahedron with an impedance on each link.
Middle: the same viewed from above. Right: the basic cell is the complete graph K4, where each
pair of vertices is connected by a link.

Zl(n+l)

Figure 3. Decimation procedure for the gasket of impedances, from generation # (left) to generation
n+ 1 (right).

Our purpose is to find the exact renormalization map connecting the impedances of
generation n, zi("), to those of generation n + 1, zi("”) (figure 3). In the 2d case [5] this is an
easy task thanks to the existence of the so-called star-triangle (or ¥ — A) transformations,
that allow one to eliminate a loop from the circuit by adding a vertex and vice-versa, but such
methods do not work in three dimensions. Therefore an alternative approach is required.

The simplest way is to follow the method used in [6] and write down the equations for
the potentials and currents in the two systems according to Kirchhoft’s laws. In order to do
so we switch to conductances: we will revert to impedances at the end of the calculation. Let

o =1/7" B =1/z"" (1)
be the conductances of link i (i = 1,...,6) at generation n and n + 1, respectively
(figure 4). For both generations we call /,, V, the incoming current and the potential at
pole a and the same for the other poles. We can put one pole to the ground, V, = 0, and
since the conservation law for currents states that I, = —1I, — I. — I; we are left with three
potentials and three currents.

In matrix form the Kirchhoff equations for the nth-generation gasket read

1, 21+22+26 -2 —2 Vi
1. | = —22 22 + 23 + 24 —24 Ve l. (2)
1, -6 -2y Y4+ X5+ X \Z}

For the sake of brevity we call [£] the 3 x 3 matrix of the (n + 1)th-order conductances,
and /, V the vectors of the external currents and potentials, so that the equations take on the
compact form I = [X]- V.
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Figure 4. We call o; the conductances of the nth-generation gasket (left) and X; those of the
(n + 1)th-generation gasket (right). I, and V, are the incoming current and the potential at pole
a, and so on for all the poles. In the nth-generation gasket v, is the potential at the middle point
between poles @ and b, and so on.

In the nth generation we call v,;, the potential at the middle point between pole a and
pole b and the same for all other internal points (there are six such points; see figure 4). The
equations for the nth-generation gasket are nine, namely, the following six for the inner poles:

o1Vp Vap
or(Vp+ Vo) Upe
- 03 Vc - Vac
[o]-v= ; v= 3)
o4 (Ve + V) Ved
o5V Vad
06(Vp + Va) Upd
where [o] is the matrix of the nth-order conductances
[o]
201 +0p +03 +05 +0g —03 -0y 0 —og —o05
—03 o1 +209 +03 +0y4 +0g -0 —og 0 —oy
o ) —o1 a1 +0p +203 +04 +05 —o5 —oy 0
0 —og —o05 0 +03 +204 +05 +0g —03 )
—og 0 —0y —03 0] +03 +0y +205 +0g -0
9 —04 0 ) -0y 0] + 0y +04 +05 +20¢
4)
and three equations for the outer poles:
I, = (01 + 02+ 06) V) — O1Vap — O2Vpe — O6Upa
I. = (02 + 03 +04) Ve — 02Vpe — O3V — O4Vcq )

Iy = (04 + 05+ 06) Vg — 04Vcq — O5Vac — O6Upa-
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We now proceed as follows. First, we solve equation (3) by inverting [o'] and find v as a linear
function of Vj, V., V; and a rational function of the {o;}. Then we plug this solution into
equation (4) to obtain a system of the form

Iy Juloi}))  fizloi})  fiz({oi}) Vi
I. | =1 fu(o) fo(o}) fiz({oiD) Ve (6)
I fiztoi}) (o)) fxz(oi}) Vi

where the f;; are rational functions of degree 7 of the {o;} that we will not write down here.
The system has the same form as (2); thus we can write

Y1+ E+ X6 = fu({oiD)
X = —fr(oi})
X6 = — f1z({oi})
Yo+ X3+ Xy = faa({oi})
2y = —faz({oi})
Yp+ Bs5+ X6 = fu({oi})

and this system can be easily solved. We find that the ¥; depend upon the o; through a rational
map of degree 7:

)

Ps(01, 02, 03, 04, 05, 0¢)
21(01, 02, 03, 04, 05, 06) = 01 — ®)
Qs(01, 02, 03, 04, 05, O6)

where Pg, Q¢ are homogeneous polynomials of degree 6 (the other ¥; are obtained with
suitable permutations: see below the considerations for the zf")). We now switch back to the
impedance space by means of equations (1).

2.2. Characteristics of the map

In the impedance space the general solution takes on the form of a six-dimensional,

homogeneous, rational map M of degree 13: {zi"m, zé"”), zé"”), zi“”, zg"”), zé’”l)} -
M(zi"), zé"), zgn), zi”), zé"), zé")). The first equation of the map is

Pz, 27, 2, 20, 2,
Z§n+1) (Zgn)’ Zgn)’ Zgn)’ Zin)’ Zén)’ Zén)) _ Z(n) ( 1 2 3 4 6 ) (9)

— <1
(2", 25", 25", 2", 2, 28")

where Pj; and Q, are homogeneous polynomials of degree 12 in the variables {z;}; the
polynomials are given in the appendix'. The other five equations are obtained from the first by
means of a set of permutations that correspond to the elements of the point group of rotations
of the tetrahedron 2. These permutations are

z1:(1,2,3,4,5,6)
72:(2,3,1,5,6,4)
z3:(3,2,1,6,5,4)
z4:(4,2,6,1,5,3)
z5:(5,3,4,2,6,1)
z6:(6,1,5,3,4,2).

(10)

! Despite the higher degree, the polynomials in the variables {z;} are not less simple than those in the {o;}: indeed,
there exists a one-to-one correspondence between the terms in (8) and those in (9). We choose to use the {z;} for
consistency with our previous work [5].

2 The group is indeed of order 12, but only six of its elements are relevant for our purposes, since permutations like
(1,2,3,4,5,6) — (1,5, 6,4, 2, 3) leave the map unchanged.
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For example, at any generation zi"+1)(zl, 22, 23, 24, 25, 26) = zi"+1)(Z4, 22,265 21 25, 23)
and so on. .

The map acts on the six-dimensional complex space: M : C’ — C°, where C = CU{oo};
we refer the reader to the specific literature [9] for the language of dynamical systems and
rational maps. M is invariant under the permutations (10) (that we shall refer to only as
‘permutations’ in the following ). As a consequence, the properties of a particular 6-uple {z;}
of impedances also hold for all its permutations. Also, the properties of a particular subspace
(such as > a;z; = 0) are shared by all the subspaces obtained using these permutations
(for example permuting the a;). In such cases we will treat only one permutation without
mentioning the other ones.

Another feature of the map M is that it is homogeneous of degree 1 in its variables:
M({rz;}) = AM({z;}), » € C. This property allows us to recover a physical meaning for
those points with a negative real value (the physical constraint on the impedance Z of a passive
element being that Re(Z) > 0). In fact, if a result holds for a 6-uple {z;} it also holds for all the
6-uples {Lz;}, A € C. So a point is ‘physically meaningful’ provided that there existsa A € C
such that {Re(rz;) > 0}. For instance, a 6-uple of impedances such as (—1,1,1,1, 1, —1)
and inductive impedances), while the 6-uple (1 +i, —1 + i, —i, 1 +i, —1 — i, —i) cannot
be mapped by multiplication into any physically meaningful point. The requisite a set of
impedances must satisfy to have a physical meaning is that their vectors in the complex plane
cover an angle < 180°.

A very important set is that of the backward orbit O of the point oo, that is, the points that
are poles of some iterate of the map: O = {{z;} : M"({z;}) = oo for some n} (by this we mean
that all the components of the iterate are infinite). They correspond to electrical resonances of
the nth-generation gasket . We distinguish the order of the iterate of the map by calling O, the
set of the points {z;} that are poles of the (n + D)th iterate: O, = {{z;} : M"*'({z;}) = 00}, s0
that O = ()72, O,. The O, can be built recursively by calculating the preimages of the poles
of M: the resonances of the first-generation gasket are the points that make the denominator
of M vanish: M(Oy) = oo; their preimages are the resonances of the second-generation
gasket: M(O;) = Oy, so that M?(O;) = oo; and so on, with M(O,,1) = O, at each
step. The O, (and hence their union ) are five-dimensional subvarieties of the space C°
and, due to the homogeneity of M, they are generalized cones with axes lying on the line
71 =20 =23 = 24 = 75 = Z¢. We will examine a subset C of O below (par. III.C) and see
that it is fractal.

The map is far too complex to be examined as it is: first we will study its fixed points
and asymptotic behaviour, then we will examine some of its properties through its invariant
subspaces.

2.3. Fixed points and asymptotic behaviour

We identify a set of impedances {zi,z2,23,24,25,26} With the vector v =
(21, 22, 23, 24, 255 26), U € CO.

The subspace (z1, z2, 23, —21, —22, —23) is a set of repelling fixed points of the map. The
point to infinity z; = zp = z3 = 74 = 75 = Z¢ = 00 is the only attracting fixed point of the
map. The recursion relations can be linearized in the vicinity of this fixed point to yield

n+1 9 _(n n n n n
Zg ) = _SZE ) + —215 ZZ( ) + Elg Z3( ) —§1§Z(4 4 _§14Z5(n) %Zé 4 (11)
and pel mutations.

3 Another set of electrical resonances, that we will not discuss here, is that of the points whose nth iterate is 0.
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We give below the diagonalized variables, written as vectors in the {z;} space, together

with their eigenvalues *:

eigenvector eigenvalue
U1=(1,2, _371’27_3)
UZ:(_5’4117_53471)
U3:(1,1,1,—1,_1,_1)
(12)
U4=(3,—2,_1,_3,2,1)

U5 = (174’ _57 _19 _4’ 5)

v6 = (17 1’ 17 17 1’ 1)

N N TV S N T I N 1V S N [ R N [

This result partitions the space C° into three orthogonal subspaces: we call S /4 the subspace
generated by vectors vy, v2; Ss/4 that generated by vs, v4, vs; S35 that generated by vs. Thus,
if we follow the evolution of a given point Z = (z1, 22, 23, 24, 25, Z6) and call Z34, Zs4, and
732 the projections of Z onto S3 /4, Ss5/4, and S35 respectively, the following asymptotic laws
hold:

2] ~ @3/ay
2] ~ 5/4)" (13)
|55 ~ 32y
(cf the results obtained in [6] with a first-order series expansion of the problem from the start).
The evolution of 734 follows the first of equations (13) only for a few steps; then the first-order

term ~(3/4)" gets smaller than the second-order terms of the series expansion (that we do not
report here) and the asymptotic law becomes |Z§'}L ~ (25/24)".

3. Invariant subspaces

In this section we will examine some invariant subspaces of the map (keeping in mind that
some of them can overlap); they are shown in figure 5.

3.1. Subspace I: (21, 21, 21, 24, 24, 24)

This subspace is obtained when the three links on the basis of the tetrahedron have the same
impedance z; and the three links going out from the vertex above have the same impedance
z4. It is generated by vectors vz and vg; the external impedances are Z,, = Z,, = Zp. and
Zad = Zpad = Zcq- The submap is
(n) _(n) (_(n) (n) (n) ()
LD 221"z (21" +225") (72" + 52"
L) MY ((,m)2 ) _(n) )2
(22" +327) (") +72)"25" +4(z")")

4 We have avoided using basis vectors, like, e.g., (1, 0, 0, 1, 0, 0) for subspace Ss4. that would be simpler but belong
to the set Oy of the poles of the map.
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Figure 5. The subspaces we considered.

(n) (_(n) (n) (14)
n n n
LD 2z, (Zl +2z, )
) 4 1 e ]
Zgn) + 3Zin)
We find that z; = —z4 is a set of repelling fixed points, while z; = z4 = o0 is an attracting

42| ~ G2

fixed point. The asymptotic laws for the latter are |z§") —z | ~ (5/4)",

3.2. Subspace II: (21, —z1, 21, 24, —Z4, 24)
The submap is
(n) _(n) (_(n) (n)
e 722y 24 ()" +22,")
L™ my2 ) ) (n)\2
(") =2V = 4(z")
n) (_(n) (n)
n+l) %4 (Zl +2z, )

z =
zi") + 314(1")

15)

The peculiarity of this submap is that the quantity 7z = z{"z{" /(z{" — z{") is constant,
so that the whole orbit of the system lies on the surface of equation z;z4/(z4 — z1) =
zio)zio) / (zio) - zgo)) = Z. The variable z4 is marginal for the asymptotic linear expansion: the
attracting fixed point of the map is indeed (z;, z4) = (Z, 00), with the following asymptotic
laws (that differ from the general ones):

2" — 2| ~ (3/4)" 2] ~ @/3)". (16)

The external impedances are Z,, = Z,, = 0; 2, = —Z; 2.4 = Zpa = Z4, While
244 ~ z4 asymptotically. There are no repelling fixed points.

3.3. Subspace III: (z1, 22, 23, 21, 22, 23)

This subspace exploits a particular symmetry of the tetrahedron: we impose each pair of
orthogonal links (in the K4 graph, each pair of links that do not share a vertex) to have the
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same impedance. The subspace is generated by vectors vy, v, vg; the external impedances
are Z,p = Zedy Zpe = Z4ds Zac = Zcq- The submap is

(n) _(n) (n) _(n) (n) _(n)
LD _ o, (H)Zl 2 T3 Tz
1

2T+ )

(n) (n) (n) (n)
(21 )( +2 )

(n) _(n) (n) _(n) ()()
(n+]) 2 (n)Z] Zzn +ann +ann

3 @ + ) (0 + )

There are no finite fixed points (except points like (0, z», z») that are poles of M and we
do not consider). The attracting fixed point is z; = z» = z3 = 0o and the related asymptotic
laws are |2 — 23", |25” — 23" | ~ G/d)s |2 + 25 + 25| ~ B3/2)".

In this subspace it is particularly easy to find the general structure of the backward
orbit of the point co. We work in three dimensions, in the space (zi, 22, 23), and call
T the map (17): 7T (z1,22,23) = M(21,22,23,21,22,23). We study the set of the
points C = {(z1,22,23) : 7"(z1,22,23) = oo forsome n}; as in section 3 we define
C, = {(z1,22,23) : T"(z1, 22, 23) = 00}, so that C = U2y Cu. C is a subset of the set
O defined in par. II.B.

The set Cyp consists of the points that make the denominator of 7 vanish, that is the
union of the three planes Cj : zi +z2 = 0,C : z1 +23 = 0,C" : 20+ 23 = 0. We then
impose 7 (C;) = Cy (so that T2(Cy) = oo) and find that C; is the union of the three surfaces
CI 122120+ 2123+ 22023 = 0, C{I 12122+ 22123+ 2023 = 0, C{H 12122+ 272123 + 2023 = 0. We
proceed iteratively: at each step 7(C.,;) = C, (i = LILII) and C, = C, UC UC". In
general C! is a homogeneous algebraic surface of order 2" and has a complex structure with
multiple points. Due to the homogeneity, C! (and hence C, and C) is a generalized cone, the
axis of which is the line z; = z, = z3. C can be visualized by sectioning it with a plane
orthogonal to its axis, which was done in figure 6 (here the plane is z; + zo + z3 = ).

A7)

3.3.1. An explicit solution. If we eliminate one more variable from (17) by setting
Zp = zz we get a map that can be explicitly solved for every point of the orbit. Defining

tn=2"" )2 uy = 25" /2" we have
2u 2u, + 1
Up+1 = - i1 = - . (18)
u, +1 u, +1

The first is a Mobius transformation (that is, a one-dimensional rational map) the solution of
which is

u, = _ 2w (19)
2" — Dup+1
and coming back to the original variables the result is
212

Zgn) (n)

2
Z;O) (0) +2n7 (0)

(20)
k (0) ) (0)
O 32 — 2
2 (0) ) )"
k:02~2k21 +Z2 _Zl

As a consequence, the points whose nth iterate is infinite are those such that z(o) / 2(0) =1-2"
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Figure 6. The cone C sectioned by the plane z; + z2 + z3 = 1. Left: the intersection of the sets
C{ (thin line) and C% (thick line) with the plane. Right: the (numerically computed) intersection of
the whole set C with the plane. The triangle in the centre is the intersection of C with the octant
21, 22,23 > 0. The figure is oriented so that the horizontal and vertical axes coincide with the
intersections of the plane with zo = 1/3 and z; = z3, respectively.

3.4. Subspace IV: (21, 22, 22, 245 25, 25)

The attracting fixed point of the map is z; = zo = z4 = z5 = 00 and the asymptotic laws are
|21 + 220 + 24 + 225] ~ (3/2)"
lz1 — z4l, l22 — 25| ~ (5/4)" (21
|21 — 220+ 24 — 25| ~ (3/4)n-

The relations between the external impedances are 2. = Z,¢, 240 = Zpa-

3.5. Subspace V: (z1, 22, —22, 24, 25, —Z5)

In this case the submap is too long to be reported. The external impedances are Z,, = 0, Z,. =
—Zpe and Zyg = —Zpa; Zpe = 4.

It can be shown that the quantity 7 = 2z§")z§") (zg") — 7z ) is constant; therefore, as for
submap (15), the orbit of the system lies on a surface determined by the initial conditions:
2257 (z;") - zé")) =227 / (z;O) - Z;())) = Z. The attracting fixed point of the submap
is (z1, 22, 24, 25) = (0, Z, 00, —%); the asymptotic laws are

2] ~ ((1/4)(7 — V1) = (0.71922.. )"
127 ~ ((1/8)(7 + V/TT))" = (139039 . )" 22)

|25 — 2|, |28 + 2| ~ ((1/2)(6 — V/17))" = (0.938 44 .. )".

The product z;z4 converges to the value 2™z = (1/4)(1 — v/17)z% with the law

2725 — 22|~ ((5/8)(5 — V17))" =(0.54806 ... )" (23)
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Figure 7. Oscillating asymptotic behaviour with p = 3.

4. Oscillating asymptotic behaviour

A phenomenon has been previously introduced [5] that concerns the periodic points of the map
for the variables’ ratios. Consider a two-dimensional rational map (xX,+1, Yn+1) = RXu, Yu),
and define u,, = y,/x, and f, = x,.1/x,. We can always decouple the map for these new
variables in such a way that u,,.; = U(u,) and t, = T (u,), where U and T are rational maps;
this way we can limit ourselves to study the map U. Suppose now that we find a periodic
point ug of period p:u, = U?P(ug) = ug; then we also get a periodic point for the map
T:t, =T (up) = ty. Turning back to the original variables, from the periodicity of # we obtain

Xp+l X1 Xps2 X2 ( )-xp+k+l Xk+1 | ( )xmp+k+1 Xk+1
LA i Lo IR =
Xp X0 Xp+l X1 X p+k Xk Xmp+k Xk
for any positive integer mand k = 0, 1, ..., p — 1. Dividing term by term
X Xp+1  Xp+2 X p+k Xmp+k
_P:P_:P_:(...):P_:(...):# (24)
X0 X1 X2 Xk X(m—1)p+k

SO

2 m
X X X
P P P
Xmp+k = X(m—1)p+k ( ) = X(m—2)p+k < ) = ( : ) = ( > Xk (25)
X0 X0 X0

This means that the orbit of the system splits into p different branches, one for each of the first
p points. All branches display the same power-law behaviour, x, ~ (x, /xo)%, but starting
from a different point; at every step the system jumps from one branch to another: we call
this oscillating asymptotic behaviour. In a logarithmic plot of x, against # this results in p
different straight lines, as exemplified in figure 7 for p = 3. A compact form for the overall
asymptotic law is

Xn ~ fp(n)(ap)" (26)
where a, = (x, /x0)"/? and fp(n) is a p-periodic function of n. An analogous asymptotic law
holds for y,.

These conclusions can be easily generalized to maps with more than two variables. In

our case the map represents the impedances on the links of the fractal, and an OAB for the
map coincides with an OAB for the external impedances.
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Itis well known [9] that a rational map of degree d can have no more than 2d — 2 attracting
periodic points, while the number of its repelling periodic points is infinite. The closure of the
repelling periodic points set is called the Julia set of the map; so, the properties of the OAB
points of a map are in close connection with the Julia set of the map for its ratios. Since the
OAB takes place in coincidence with repelling periodic points, and in physical systems we
cannot start with infinite precision from a given point (i.e., a given set of impedances), this
kind of behaviour persists only for a finite number of iterations, after which the system evolves
towards an attracting point. So this effect is destroyed in the asymptotic limit: it is a feature
of limited-size, or mesoscopic, systems.

In several models on self-similar structures [10] the log-periodic corrections to scaling, in
the form of equation (29), are shown to be a signature of the dilatation-invariant geometry of
the underlying system. In particular, Derrida ef al [11] connected such corrections (and called
them ‘oscillatory critical amplitudes’) to the Julia set of the renormalization group map for
statistical models on hierarchical lattices. We point out that those phenomena are characteristic
of the thermodynamic limit, as opposed to ours that can only occur far from that limit.

In the following we examine the OAB for some submaps of M.

4.1. Subspace I

We define u, = z{" /z{" and 1, = z{"*" /z{"". The equation for u, decouples and 7, evolves
only through u,,:

U, 7u,21 + Su,
Up+1l = Up) =
uZ+Tu, +4
(27)
2u, +4
I, = T(un) = .
u, +3

The attracting fixed point of U is 1, that corresponds to z; = z4 = 0o of map (14). There are
in general 2”7 + 1 periodic points of period p; it can be shown that almost all are repelling. A
general property of rational maps [5, 9] states indeed that if an attracting periodic point exists,
then its basin of attraction contains at least one critical point (a point u such that U’ (u) = 0).
Since the only critical points of the map U are (—7 % ix/6)/11 and they fall in the basin of
attraction of the fixed point 1, there are no attracting periodic points apart from 1. Thus, all the
points we find are repelling periodic (or at most periodic indifferent, but we have found none).
Furthermore, the Julia set of a map can be constructed by tracing the backward orbit of just
one of its elements (here we can take, e.g., the fixed point —1). So, since the preimages U4 ()
are (5 —Tu £ v/33u? + 42u + 35)/(2u — 14) and map the interval (—1, 0) onto itself, the Julia
set of the map U is contained in that interval. In figure 7 we show the evolution of the external
impedance Z,, corresponding to the period-3 OAB starting point zio) ~ —0.904, sz)) = 1;in
this case the constant a, in equation (26) has the value a3 >~ 1.379.

4.2. Subspace I1

We define again u, = z" /z{" and 1, = z{"*" /z{" and find the reduced map

—up(u, +3)
Uns1 = Uuy) = P p—
S 28
U, +2 (28)
ty =T (u,) = .
U, +3

The unique attracting fixed point of U is 0 (corresponding to the point (z1, z4) = (Z, 00) of
map (15)). There are in general 27 + 1 points of period p; since the preimages of U are
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Us(u) = 3 —u +~/17u? + 10u + 9)/(—2u — 2) and map the real axis onto itself, the Julia
set of the map U is contained in R. There are no attracting periodic points because the only
critical points —1 = i+/2 belong to the basin of attraction of the fixed point 0.

4.3. Subspace ITT

We define 1, = z\""" /2", u, = 23" /z\" and w, = z{" /z{"’; the evolution of 1, decouples,
depending only on u,, w,, and we are led to the equations

1+u,
ul’l+] = uni
u, +w,
1+w,
Wpel = Wy ——— (29)
u, +w,

2(u, + wy +uy,wy,)
(tn + up) (@ + wy) .

As we have said above, all the considerations of the one-dimensional case hold: if we find
a periodic point for the map (u,, w,) — (Un+1, wys1) We have also found a nth-order OAB
point. The map being two-dimensional, despite its simplicity, the task is now much more
difficult. In general it can be said that there are at most 2P*! periodic points of period p for
the map. We have found with numerical methods several of them up to order 4, and some of
them are complex.

It = T(I/tn, w,) =

5. Frequency dependence

The system discussed in this paper can be implemented by putting frequency-dependent
impedances on the links of the gasket and measuring the external impedances as a function of
the frequency at some given generation n. This could both represent the frequency-dependent
response of a disordered system (in the thermodynamic limit » — ©0) and a man-made
circuit with passive elements (in the low-n regime). In the following two sections, we first
choose subspace I to show what appearance such a response could have in both cases (other
low-dimensional submaps show similar behaviours). Then we turn to subspace III, that in the
thermodynamic limit has a quite different and interesting response.

We work with real numbers, keeping in mind that (modulo imaginary units) they
correspond to pure inductances and capacitances. There is no loss of generality in doing
so: if we replace pure impedances with realistic ones (typically with a small resistance in
series or in parallel), the resonance poles on the frequency axis become resonance peaks
centred roughly on the same points.

5.1. Subspace I

We start from the configuration

1
) . (0)
Z, = - z, =olL 30)

then iterate map (14) n times and measure one of the external impedances (henceforth, the
response Z) of the fractal to a variable-frequency input at generation n. The response is shown
in figure 8 (left) for a very big system (n = 50); as a consequence of map (14), at generation
n there are 2"*! — 2 poles on the frequency axis. For 0 < w < @, with @ = 1/+/LC, the
response is smooth (without poles). In the range of frequencies from the value @ to co we
find a fractal distribution of poles with box-counting dimension 0.72 4 0.01 (independent of
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impedance
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0.991

10 10
frequency ® frequency o

Figure 8. Dependence of the electrical response on the frequency for a 3d gasket belonging to
subspace I. Left: in the case of a very big system (n = 50). Right: in the case of a small system
(n=235).

impedance

|
N

frequency ®

Figure 9. Dependence of the electrical response on the frequency for a 3d gasket belonging to
subspace III for a very big system (n = 50). The behaviour in each of the four regions is explained
in the text.

L and C). For small systems (n < 5, so with a number of elements < 6 x 10%; figure 8, right)
the region with poles does not extend to oo and the response becomes smooth for @ — oo
with an inductive law (Z ~ w).

If we start instead with z(lo) = oL, zflo) = —1/wC, the response displays a fractal
distribution of poles (with box-counting dimension 0.685 £ 0.01) for 0 < w < & and is
smooth for @ > @. For systems with small n the non-smooth region does not reach 0, where
we have rather a capacitive law: Z ~ —1/w.

5.2. Subspace IIT

We choose zio) = wlL, 250) = wl,, zéo) = 1/wC, iterate equations (17) and measure the

final impedance. For a large system with n = 50, as shown in figure 9, the response as
a function of the frequency is quite complicated. We distinguish four regions, which we
enumerate and describe from left to right. In region 1, that goes from 0 to @ = 1/ VLC with
L =max(L;, L,), the response is smooth. On the right of @ we find region 2, that shows small
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fractal sets of poles localized around ‘main’ poles. If we label with w, the positions of the
main poles from right to left we find that their distribution satisfies two alternating geometric
progressions: for ‘odd’ poles ws,41 — @ ~ 277, and for ‘even’ poles wy, — @ ~ 277, with
a fixed ratio w;,/wyp+1 = 1.1. In region 3 the distribution of the poles is fractal with a
box-counting dimension dr = 0,485 %+ 0.01 (independent of L, and C). In region 4, that
extends up to oo, the poles show again a double geometric progression; labelling the positions
of the poles with w,, from left to right we find w;,4+1 ~ 2°P/2 o, P 2P/2, For smaller systems
the main features of the above-described regions remain, but region 4 does not reach co, where
we have instead an inductive behaviour (Z ~ w).

In the second case, that is starting from zﬁo) = l/a)Cl,zgo) = 1/wC;, zéo) = wlL, the
behaviour is similar; we describe it from left to right without a figure. In region 1, starting
from 0, we find a double geometric progression of poles; labelling the poles from right to left
we have wyp ~ 2712 wrp ~ 27P/2 (s0 0 is an accumulation point of poles). In region 2
we find a fractal distribution of poles with the same dy as in region 3 of the first case. In
region 3, thatends in® = 1/ VLG , with C = min(Cy, C,), there is again a double geometric
progression; labelling the poles from left to right we have wsp .y — & ~ 277, wy, — & ~ 277,
Region 4 is smooth with a capacitive behaviour: Z ~ —1/w. For small size region 1 does not
approximate 0; rather, for w — 0 the law is inductive: Z ~ w.

6. Conclusions and perspectives

We addressed the issue of the decimation of a 3d Sierpinski gasket of impedances and found
the exact decimation map. This result allowed us to describe several features that make this
system more complicated and interesting than its two-dimensional analogue. Among these
there are a set of submaps with conserved quantities, and another set where an explicit solution
can be found for every point of the orbit.

This result is relevant not only to mathematics: indeed, it enables us to study properties
that can be measured in real circuits. In particular, we were able to find the distribution of the
resonances of the system in the impedance space, the dependence of the external impedance
on the frequency of an applied signal, and typical small-size effects like oscillating asymptotic
behaviour.

The method we used in this paper can be readily generalized to the n-dimensional version
of the Sierpinski gasket, where the basic cell is a hypertetrahedron. The exact calculations
become rapidly unaffordable, as can be guessed from the difference between the solutions in
the 2d and the 3d cases. However, some general results can be drawn and to first order a
general solution for the asymptotic regime can be found, as we will show in a forthcoming
work [12].

Appendix A.
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